The author's experimental discoveries in the field of solid-state phase transitions have brought about a thorough explanation of this phenomenon, including the puzzling nature of "lamda-anomalies." These phase transitions are found to be always a nucleation and crystal growth in a solid medium, while "second (or higher) order" phase transitions are a misconception: they do not exist. Ramifications of this new understanding are substantial. In this book the reader will find the first unified account for fundamentals of the three great areas of solid-state physics? Phase transitions, ferromagnetism and ferroelectricity, free of the inconsistencies of the conventional theories.
High-Temperature Thermal Storage Systems Using Phase Change Materials offers an overview of several high-temperature phase change material (PCM) thermal storage systems concepts, developed by several well-known global institutions with increasing interest in high temperature PCM applications such as solar cooling, waste heat and concentrated solar power (CSP). The book is uniquely arranged by concepts rather than categories, and includes advanced topics such as thermal storage material packaging, arrangement of flow bed, analysis of flow and heat transfer in the flow bed, energy storage analysis, storage volume sizing and applications in different temperature ranges. By comparing the varying approaches and results of different research centers and offering state-of-the-art concepts, the authors share new and advanced knowledge from researchers all over the world. This reference will be useful for researchers and academia interested in the concepts and applications and different techniques involved in high temperature PCM thermal storage systems. Offers coverage of several high temperature PCM thermal storage systems concepts developed by several leading research institutions. Provides new and advanced knowledge from researchers all over the world. Includes a base of material properties throughout.

Comprehensive and unique source integrates the material usually distributed among a half a dozen sources. * Presents a unified approach to modeling of new designs and develops the skills for complex engineering analysis. * Provides industrial insight to the applications of the basic theory developed.

This is a long-needed general introduction to the physics and chemistry of the liquid-vapor phase transition of metals. Physicists and physical chemists have made great strides understanding the basic principles involved, and engineers have discovered a wide variety of new uses for fluid metals. Yet there has been no book that brings together the latest ideas and findings in the field or that bridges the conceptual gap between the condensed-matter physics relevant to a dense metallic liquid and the molecular chemistry relevant to a dilute atomic vapor. Friedrich Hensel and William Warren seek to change that here. They draw on cutting-edge research and data from carefully selected fluid-metal systems as they strive to develop a rigorous theoretical approach to predict the thermodynamic behavior of fluid metals over the entire liquid-vapor range. This book will appeal to theoreticians interested in metal-nonmetal transitions or continuous phase transitions in general. It will also be of great value to those who need to understand the practical applications of fluid metals, for example, as a high-temperature working fluid or as a key component of semiconductor manufacturing. Originally published in 1999. The Princeton Legacy Library uses the latest print-on-demand technology to again make
available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

The study of capillarity is in the midst of a veritable explosion. What is offered here is not a comprehensive review of the latest research but rather a compendium of principles designed for the undergraduate student and for readers interested in the physics underlying these phenomena.

This Handbook provides researchers, faculty, design engineers in industrial R&D, and practicing engineers in the field concise treatments of advanced and more-recently established topics in thermal science and engineering, with an important emphasis on micro- and nanosystems, not covered in earlier references on applied thermal science, heat transfer or relevant aspects of mechanical/chemical engineering. Major sections address new developments in heat transfer, transport phenomena, single- and multiphase flows with energy transfer, thermal-bioengineering, thermal radiation, combined mode heat transfer, coupled heat and mass transfer, and energy systems. Energy transport at the macro-scale and micro/nano-scales is also included. The internationally recognized team of authors adopt a consistent and systematic approach and writing style, including ample cross reference among topics, offering readers a user-friendly knowledgebase greater than the sum of its parts, perfect for frequent consultation. The Handbook of Thermal Science and Engineering is ideal for academic and professional readers in the traditional and emerging areas of mechanical engineering, chemical engineering, aerospace engineering, bioengineering, electronics fabrication, energy, and manufacturing concerned with the influence thermal phenomena.

“Micro Transport Phenomena During Boiling” reviews the new achievements and contributions in recent investigations at microscale. The content mainly includes (i) fundamentals for conducting investigations of micro boiling, (ii) microscale boiling and transport phenomena, (iii) boiling characteristics at microscale, (iv) some important applications of micro boiling transport phenomena. This book is intended for researchers and engineers in the field of micro energy systems, electronic cooling, and thermal management in various compact devices/systems at high heat removal and/or heat dissipation. Dr. Xiaofeng Peng, who had passed away on Sep. 10, 2009, was a professor at the Department of Thermal Engineering, Tsinghua University, China.
Provides a comprehensive coverage of the basic phenomena. It contains twenty-five chapters which cover different aspects of boiling and condensation. First the specific topic or phenomenon is described, followed by a brief survey of previous work, a phenomenological model based on current understanding, and finally a set of recommended design equations.

Predictive theories of phenomena involving phase change with applications in engineering are investigated in this volume, e.g., solid-liquid phase change, volume and surface damage, and phase change involving temperature discontinuities. Many other phase change phenomena such as solid-solid phase change in shape memory alloys and vapor-liquid phase change are also explored. Modeling is based on continuum thermo-mechanics. This involves a renewed principle of virtual power introducing the power of the microscopic motions responsible for phase change. This improvement yields a new equation of motion related to microscopic motions, beyond the classical equation of motion for macroscopic motions. The new theory sensibly improves the phase change modeling. For example, when warm rain falls on frozen soil, the dangerous black ice phenomenon can be comprehensively predicted. In addition, novel equations predict the evolution of clouds, which are themselves a mixture of air, liquid water and vapor.

This book presents a comprehensive overview of fluid mechanical, thermal and physico-chemical aspects of drop-surface interactions. Basic physical mechanisms pertaining to free-surface flow phenomena characteristic of drop impact on solid and liquid surfaces are explained emphasizing the importance of scaling. Moreover, physico-chemical fundamentals relating to a forced spreading of complex solutions, analytical tools for calculating compressibility effects, and heat transfer and phase change phenomena occurring during solidification and evaporation processes, respectively, are introduced in detail. Finally, numerical approaches particularly suited for modeling drop-surface interactions are concisely surveyed with a particular emphasis on boundary integral methods and Navier-Stokes algorithms (volume of fluid, level set and front tracking algorithms). The book is closed by contributions to a workshop on Drop-Surface Interactions held at the International Centre of Mechanical Sciences.

Microchannel Heat transfer is the cooling application of high power density microchips in the CPU system, micropower systems and many other large scale thermal systems requiring effective cooling capacity. This book offers the latest research and recommended models on the microsize cooling system which not only significantly reduces the weight load, but also enhances the capability to remove much greater amount of heat than any of large scale cooling systems. A detailed reference in microchannel phase change (boiling and condensation) including recommended models and
correlations for various requirements such as pressure loss, and heat transfer coefficient. Researchers, engineers, designers and students will benefit from the collated, state-of-the-art of the research put together in this book and its systematic, addressing all the relevant issues and providing a good reference for solving problems of critical analysis. Up-to-date information will help delineate further research direction in the microchannel heat transfer. The latest modeling information and recommendations will help in design method and purpose.

Cavitation and Bubble Dynamics deals with fundamental physical processes of bubble dynamics and cavitation for graduate students and researchers.

The first of two volumes, this edited proceedings book features research presented at the XVI International Conference on Hyperbolic Problems held in Aachen, Germany in summer 2016. It focuses on the theoretical, applied, and computational aspects of hyperbolic partial differential equations (systems of hyperbolic conservation laws, wave equations, etc.) and of related mathematical models (PDEs of mixed type, kinetic equations, nonlocal or/and discrete models) found in the field of applied sciences.

Droplet Wetting and Evaporation provides engineers, students, and researchers with the first comprehensive guide to the theory and applications of droplet wetting and evaporation. Beginning with a relevant theoretical background, the book moves on to consider specific aspects, including heat transfer, flow instabilities, and the drying of complex fluid droplets. Each chapter covers the principles of the subject, addressing corresponding practical issues and problems. The text is ideal for a broad range of domains, from aerospace and materials, to biomedical applications, comprehensively relaying the challenges and approaches from the different communities leading the way in droplet research and development.

This book identifies opportunities, priorities, and challenges for the field of condensed-matter and materials physics. It highlights exciting recent scientific and technological developments and their societal impact and identifies outstanding questions for future research. Topics range from the science of modern technology to new materials and structures, novel
quantum phenomena, nonequilibrium physics, soft condensed matter, and new experimental and computational tools. The book also addresses structural challenges for the field, including nurturing its intellectual vitality, maintaining a healthy mixture of large and small research facilities, improving the field's integration with other disciplines, and developing new ways for scientists in academia, government laboratories, and industry to work together. It will be of interest to scientists, educators, students, and policymakers.

The primary mission of the third edition of Handbook of Food Engineering is to provide the information needed for efficient design and development of processes used in the manufacturing of food products, along with supplying the traditional background on these processes. The new edition focuses on the thermophysical properties of food and the rate constants of change in food components during processing. It highlights the use of these properties and constants in process design. In addition to chapters on the properties of food and food ingredients, the book has a new chapter on nano-scale science in food processing. An additional chapter focuses on basic concepts of mass transfer in foods.

This text blends traditional introductory physics topics with an emphasis on human applications and an expanded coverage of modern physics topics, such as the existence of atoms and the conversion of mass into energy. Topical coverage is combined with the author's lively, conversational writing style, innovative features, the direct and clear manner of presentation, and the emphasis on problem solving and practical applications.

Since the second edition of Liquid-Vapor Phase-Change Phenomena was written, research has substantially enhanced the understanding of the effects of nanostructured surfaces, effects of microchannel and nanochannel geometries, and effects of extreme wetting on liquid-vapor phase-change processes. To cover advances in these areas, the new third edition includes significant new coverage of microchannels and nanostructures, and numerous other updates. More worked examples and numerous new problems have been added, and a complete solution manual and electronic figures for classroom projection will be available for qualified adopting professors.

Advances in Thermal Energy Storage Systems, 2nd edition, presents a fully updated comprehensive analysis of thermal energy storage systems (TES) including all major advances and developments since the first edition published. This very successful publication provides readers with all the information related to TES in one resource, along with a variety of applications across the energy/power and construction sectors, as well as, new to this edition, the transport industry.
After an introduction to TES systems, editor Dr. Prof. Luisa Cabeza and her team of expert authors consider the source, design and operation of the use of water, molten salts, concrete, aquifers, boreholes and a variety of phase-change materials for TES systems, before analyzing and simulating underground TES systems. This edition benefits from 5 new chapters covering the most advanced technologies including sorption systems, thermodynamic and dynamic modelling as well as applications to the transport industry and the environmental and economic aspects of TES. It will benefit researchers and academics of energy systems and thermal energy storage, construction engineering academics, engineers and practitioners in the energy and power industry, as well as architects of plants and storage systems and R&D managers. Includes 5 brand new chapters covering Sorption systems, Thermodynamic and dynamic models, applications to the transport sector, environmental aspects of TES and economic aspects of TES All existing chapters are updated and revised to reflect the most recent advances in the research and technologies of the field Reviews heat storage technologies, including the use of water, molten salts, concrete and boreholes in one comprehensive resource Describes latent heat storage systems and thermochemical heat storage Includes information on the monitoring and control of thermal energy storage systems, and considers their applications in residential buildings, power plants and industry

This book provide an interwoven development of classical and statistical thermodynamic principles from a modern perspective.

The book focuses on new analytical, experimental, and computational developments in the field of research of heat and mass transfer phenomena. The generation, conversion, use, and exchange of thermal energy between physical systems are considered. Various mechanisms of heat transfer such as thermal conduction, thermal convection, thermal radiation, and transfer of energy by phase changes are presented. Theory and fundamental research in heat and mass transfer, numerical simulations and algorithms, experimental techniques, and measurements as they applied to all kinds of applied and emerging problems are covered.

Never HIGHLIGHT a Book Again! Virtually all of the testable terms, concepts, persons, places, and events from the textbook are included. Cram101 Just the FACTS101 studyguides give all of the outlines, highlights, notes, and quizzes for your textbook with optional online comprehensive practice tests. Only Cram101 is Textbook Specific. Accompanys: 9781591690351.
Today, the application of phase change materials (PCMs) has developed in different industries, including the solar cooling and solar power plants, photovoltaic electricity systems, the space industry, waste heat recovery systems, preservation of food and pharmaceutical products, and domestic hot water. PCMs use the principle of latent heat thermal storage to absorb energy in large quantities when there is a surplus and release it when there is a deficit. This promising technology has already been successfully implemented in many construction projects. The aim of this book is to assist the scientists and to provide the reader with a comprehensive overview of the properties that characterize the phase change materials from theoretical and experimental perspectives with a focus on their technological applications. The present status and future perspectives of phase change material are discussed.

Phase transition dynamics is centrally important to condensed matter physics. This 2002 book treats a wide variety of topics systematically by constructing time-dependent Ginzburg-Landau models for various systems in physics, metallurgy and polymer science. Beginning with a summary of advanced statistical-mechanical theories including the renormalization group theory, the book reviews dynamical theories, and covers the kinetics of phase ordering, spinodal decomposition and nucleation in depth. The phase transition dynamics of real systems are discussed, treating interdisciplinary problems in a unified manner. Topics include supercritical fluid dynamics, stress-diffusion coupling in polymers and mesoscopic dynamics at structural phase transitions in solids. Theoretical and experimental approaches to shear flow problems in fluids are reviewed. Phase Transition Dynamics provides a comprehensive account, building on the statistical mechanics of phase transitions covered in many introductory textbooks. It will be essential reading for researchers and advanced graduate students in physics, chemistry, metallurgy and polymer science.

An overview of recent developments in the field of first-order phase transitions, which may be considered a continuation of the previous work 'Aggregation Phenomena in Complex Systems', covering work done and discussed since then. Each chapter features a different aspect of the field written by international specialists, and covers such topics as nucleation and crystallization kinetic of silicate glasses, nucleation in concentration gradients, the determination of coefficients of emission of nucleation theory, diamonds from vitreous carbon.

This advanced textbook for courses covering heat transfer with phase change, was developed based on the author's wide experience of teaching courses on the subject. In his comprehensive treatment, Carey offers, through illustrative examples and problems, a presentation of non-equilibrium thermodynamics and interfacial phenomena associated with
vaporization and condensation processes, in addition to fundamentals of heat transfer and fluid flow mechanisms. The sequence in which the material is presented is designed to facilitate instruction at the advanced undergraduate level in mechanical and chemical engineering. Tables of thermophysical properties are included in an appendix to aid in the solution to many of the homework problems.

This timely, readable text offers an authoritative and balanced analysis of how racially driven policies in America impact post-release education as a leading pathway to social reintegration. Compelling research findings from an assemblage of college faculty, seasoned administrators, and criminal justice professionals are interwoven with first-person narratives from formerly incarcerated individuals. This book takes full advantage of its interdisciplinary mixture of voices and positionality to build its argument upon a three-part framework from Critical Race Theory (CRT). It convincingly utilizes the tools of academic research, counterstories, and counterspaces to make a persuasive case that the intersection of race, the criminal justice system, and education represent one of the greatest civil rights issues of our time. Part 1, “Context, Critical Race Theory and College Re-Entry,” explores the historical and current dynamics of these uniquely American intersections while linking Critical Race Theory with the field of re-entry and offering serious analysis of post-incarceration and education initiatives. Interest convergence, white privilege, and writing from returning citizens as a way of “coming to voice” are also explored in this section. Part 2, “Counterstories,” offers case, comparative case, and phenomenological studies that include embedded quotations with first-person narratives contributed from formerly incarcerated students and graduates. This section also includes an honest and gripping analytic auto-ethnography from the book’s co-editor who readily reveals his experiences as both a faculty member and formerly incarcerated individual. Other highlighted topics include the issues of stigma, overcoming obstacles in the classroom, and the unique problems for returning citizens when acclimating to college culture. Combining qualitative research and descriptions of successful programs Part 3, “Counterspaces,” explores the dynamics of creating places within programs and classrooms that support physical, emotional, spiritual, and intellectual engagement for and with the formerly incarcerated through learner-centered, culturally sensitive, and racially explicit pedagogy. This book is designed to be a most welcome addition to any serious academic discussion focusing upon institutionalized racism and education’s use as a tool in reversing the mass incarceration of people of color in America.

Chemistry and chemical engineering have changed significantly in the last decade. They have broadened their scope into biology, nanotechnology, materials science, computation, and advanced methods of process systems.
engineering and controlâ€”so much that the programs in most chemistry and chemical engineering departments now barely resemble the classical notion of chemistry. Beyond the Molecular Frontier brings together research, discovery, and invention across the entire spectrum of the chemical sciencesâ€”from fundamental, molecular-level chemistry to large-scale chemical processing technology. This reflects the way the field has evolved, the synergy at universities between research and education in chemistry and chemical engineering, and the way chemists and chemical engineers work together in industry. The astonishing developments in science and engineering during the 20th century have made it possible to dream of new goals that might previously have been considered unthinkable. This book identifies the key opportunities and challenges for the chemical sciences, from basic research to societal needs and from terrorism defense to environmental protection, and it looks at the ways in which chemists and chemical engineers can work together to contribute to an improved future.

Featuring contributions from the renowned researchers and academicians in the field, this book covers key conventional and emerging cooling techniques and coolants for electronics cooling. It includes following thematic topics: - Cooling approaches and coolants - Boiling and phase change-based technologies - Heat pipes-based cooling - Microchannels cooling systems - Heat loop cooling technology - Nanofluids as coolants - Theoretical development for the junction temperature of package chips. This book is intended to be a reference source and guide to researchers, engineers, postgraduate students, and academicians in the fields of thermal management and cooling technologies as well as for people in the electronics and semiconductors industries.

Dropwise Condensation on Textured Surfaces presents a holistic framework for understanding dropwise condensation through mathematical modeling and meaningful experiments. The book presents a review of the subject required to build up models as well as to design experiments. Emphasis is placed on the effect of physical and chemical texturing and their effect on the bulk transport phenomena. Application of the model to metal vapor condensation is of special interest. The unique behavior of liquid metals, with their low Prandtl number and high surface tension, is also discussed. The model predicts instantaneous drop size distribution for a given level of substrate subcooling and derives local as well as spatio-temporally averaged heat transfer rates and wall shear stress.

Never HIGHLIGHT a Book Again Virtually all testable terms, concepts, persons, places, and events are included. Cram101 Textbook Outlines gives all of the outlines, highlights, notes for your textbook with optional online practice
Transport phenomena is used here to describe momentum, energy, mass, and entropy transfer (Bird et al. 1960, 1980). It includes thermodynamics, a special case of which is thermostatics. Interfacial transport phenomena refers to momentum, energy, mass, and entropy transfer within the immediate neighborhood of a phase interface, including the thermodynamics of the interface. In terms of qualitative physical observations, this is a very old field. Pliny the Elder (Gaius Plinius Secundus, 23-79 A.D.; Pliny 1938) described divers who released small quantities of oil from their mouths, in order to damp capillary ripples on the ocean surface and in this way provide more uniform lighting for their work. Similar stories were retold by Benjamin Franklin, who conducted experiments of his own in England (Van Doren 1938). In terms of analysis, this is a generally young field. Surface thermostatics developed relatively early, starting with Gibbs (1948) and continuing with important contributions by many others (see Chapter 5).

Boiling: Research and Advances presents the latest developments and improvements in the technologies, instrumentation, and equipment surrounding boiling. Presented by the Japan Society of Mechanical Engineers, the book takes a holistic approach, first providing principles, and then numerous practical applications that consider size scales. Through six chapters, the book covers contributed sections from knowledgeable specialists on various topics, ranging from outlining boiling phenomena and heat transfer characteristics, to the numerical simulation of liquid-gas two phase flow. It summarizes, in a single volume, the state-of-the-art in boiling heat transfer and provides a valuable resource for thermal engineers and practitioners working in the thermal sciences and thermal engineering. Explores the most recent advancements in boiling research and technology from the last twenty years Provides section content written by contributing experts in their respective research areas Shares research being conducted and advancements being made on boiling and heat transfer in Japan, one of the major research hubs in this field

Transport phenomena are the physical forces and processes by which energy and mass are moved into, out of, and throughout a system. Systems that are changing from one state (phase) to another, such as liquid to gas, are said to be "multiphase." This advanced text, for the first time, teaches the fundamentals of transport phenomena, including the relevant thermodynamics and kinetics, in the context of multiphase systems. Students will find this an accessible guide to the understanding of an often dauntingly complex subject, with ample worked-out examples taken from real-life engineering problems and helpful end-of-chapter problems to help reinforce abstract concepts. *Develops and
understanding of the thermal and physical behavior of multiphase systems *Reviews underlying thermodynamics, including thermal equilibria and stability, thermodynamics of surfaces *Covers all types of phase changes, including melting and solidification, sublimation and vapor deposition, boiling, condensation, and evaporation *Ample end-of-chapter problems *Solutions Manual

Phase transitions--changes between different states of organization in a complex system--have long helped to explain physics concepts, such as why water freezes into a solid or boils to become a gas. How might phase transitions shed light on important problems in biological and ecological complex systems? Exploring the origins and implications of sudden changes in nature and society, Phase Transitions examines different dynamical behaviors in a broad range of complex systems. Using a compelling set of examples, from gene networks and ant colonies to human language and the degradation of diverse ecosystems, the book illustrates the power of simple models to reveal how phase transitions occur. Introductory chapters provide the critical concepts and the simplest mathematical techniques required to study phase transitions. In a series of example-driven chapters, Ricard Solé shows how such concepts and techniques can be applied to the analysis and prediction of complex system behavior, including the origins of life, viral replication, epidemics, language evolution, and the emergence and breakdown of societies. Written at an undergraduate mathematical level, this book provides the essential theoretical tools and foundations required to develop basic models to explain collective phase transitions for a wide variety of ecosystems.

Liquid-Vapor Phase-Change Phenomena presents the basic thermophysics and transport principles that underlie the mechanisms of condensation and vaporization processes. The text has been thoroughly updated to reflect recent innovations in research and to strengthen the fundamental focus of the first edition. Starting with an integrated presentation of the nonequilibrium thermodynamics and interfacial phenomena associated with vaporization and condensation, coverage follows of the heat transfer and fluid flow mechanisms in such processes. The second edition includes significant new material on the nanoscale and microscale thermophysics of boiling and condensation phenomena and the use of advanced computational tools to create new models of phase-change events. The importance of basic phenomena to a wide variety of applications is emphasized and illustrated throughout using examples and problems. Suitable for senior undergraduate and first-year graduate students in mechanical or chemical engineering, the book can also be a helpful reference for practicing engineers or scientists studying the fundamental physics of nucleation, boiling and condensation.
This textbook presents a modern treatment of fundamentals of heat and mass transfer in the context of all types of multiphase flows with possibility of phase-changes among solid, liquid and vapor. It serves equally as a textbook for undergraduate senior and graduate students in a wide variety of engineering disciplines including mechanical engineering, chemical engineering, material science and engineering, nuclear engineering, biomedical engineering, and environmental engineering. Multiphase Heat Transfer and Flow can also be used to teach contemporary and novel applications of heat and mass transfer. Concepts are reinforced with numerous examples and end-of-chapter problems. A solutions manual and PowerPoint presentation are available to instructors. While the book is designed for students, it is also very useful for practicing engineers working in technical areas related to both macro- and micro-scale systems that emphasize multiphase, multicomponent, and non-conventional geometries with coupled heat and mass transfer and phase change, with the possibility of full numerical simulation.

Copyright code: 7e65ae105675ad325ae88614b9a9c180