Wind Farm Power Prediction in Complex Terrain

Aspects on Wind Turbine Protections and Induction Machine Fault Current Prediction

The book is an extended and updated edition of the book published in 1996 under the same title (World Scientific, ISBN 9810216866). It contains a very comprehensive and extensive study on surface ocean waves induced by wind, earthquakes and possible landslides and asteroids impacts. The basic mathematical principles, physical description of the observed phenomena, practical forecasting techniques of the various wave parameters and extended application in ocean and coastal engineering, are discussed from the stochastic point of view. All chapters were completely rewritten and supplemented with many new discoveries which were published since the first edition in 1996. In particular, new chapters are added on very interesting and contemporary topics such as: wave breaking mechanisms in deep- and shallow water, freak waves, tsunami, water circulation in porous sea bottom induced by surface waves, and waves propagation through mangrove forests. In terms of numerical modeling, the state of the art of the modern methodology of wave prediction models WAM and SWAN, as well as of the high sophisticated satellite methods of waves measurement and modern
Prediction of Winds and Current Loads on VLCCs

Can renewable energy provide reliable power? Will it need extensive backup?

An Evaluation of CASP Drift Predictions Near the New England Shelf/slope Front

A modified version of Professor W. Hansen's (1966) numerical hydrodynamical prediction model is used to predict typical tide and tidal current variations in the South China Sea for five different wind fields. Cotidal charts constructed from the sum of the major partial tides are presented for higher high and lower low water. The model, basic assumptions and boundary conditions are presented. No statistical evaluation of the model results can be made because of the lack of actual data. However, based on the excellent results obtained with this model for the North Sea and the good correlation with existing South China Sea data, it is believed that these results are superior in detail and accuracy to existing interpretations of the area. (Author).

Improving Wind Ramp Predictions Using Gabor Filtering and Statistical Scenarios

Wind power is the fastest growing renewable energy technology and electric power source (AWEA, 2004a). This renewable energy has demonstrated its readiness to become a more significant contributor to the electricity supply in the western U.S. and help ease the power shortage (AWEA, 2000). The practical exercise of this alternative energy supply also showed its function in stabilizing electricity prices and reducing the emissions of pollution and greenhouse gases from other natural gas-fired power plants. According to the U.S. Department of Energy (DOE), the world's winds could theoretically supply the equivalent of 5800 quadrillion BTUs of energy each year, which is 15 times current world energy demand (AWEA, 2004b). Archer and Jacobson (2005) also reported an estimation of the global wind energy potential with the magnitude near half of DOE's quote. Wind energy has been widely used in Europe; it currently supplies 20% and 6% of Denmark's and Germany's electric power, respectively, while less than 1% of U.S. electricity is generated from wind (AWEA, 2004a). The production of wind energy in California (≈1.2% of total power) is slightly higher than the national average (CEC & EPRI, 2003). With the recently enacted Renewable
Portfolio Standards calling for 20% of renewables in California's power generation mix by 2010, the growth of wind energy would become an important resource on the electricity network. Based on recent wind energy research (Roulston et al., 2003), accurate weather forecasting has been recognized as an important factor to further improve the wind energy forecast for effective power management. To this end, UC-Davis (UCD) and LLNL proposed a joint effort through the use of UCD's wind tunnel facility and LLNL's real-time weather forecasting capability to develop an improved regional wind energy forecasting system. The current effort of UC-Davis is aimed at developing a database of wind turbine power curves as a function of wind speed and direction, using its wind tunnel facility at the windmill farm at the Altamont Pass. The main objective of LLNL's involvement is to provide UC-Davis with improved wind forecasts to drive the parameterization scheme of turbine power curves developed from the wind tunnel facility. Another objective of LLNL's effort is to support the windmill farm operation with real-time wind forecasts for the effective energy management. The forecast skill in capturing the situation to meet the cut-in and cutout speed of given turbines would help reduce the operation cost in low and strong wind scenarios, respectively. The main focus of this report is to evaluate the wind forecast errors of LLNL's three-dimensional real-time weather forecast model at the location with the complex terrain. The assessment of weather forecast accuracy would help quantify the source of wind energy forecast errors from the atmospheric forecast model and/or wind-tunnel module for further improvement in the wind energy forecasting system.

The Influence of Wind on HF Radar Surface Current Forecasts

This book is intended as a handbook for professionals and researchers in the areas of Physical Oceanography, Ocean and Coastal Engineering and as a text for graduate students in these fields. It presents a comprehensive study on surface ocean waves induced by wind, including basic mathematical principles, physical description of the observed phenomena, practical forecasting techniques of various wave parameters and applications in ocean and coastal engineering, all from the probabilistic and spectral points of view. The book commences with a description of mechanisms of surface wave generation by wind and its modern modeling techniques. The stochastic and probabilistic terminology is introduced and the basic statistical and spectral properties of ocean waves are developed and discussed in detail. The bulk of material deals with the prediction techniques for waves in deep and coastal waters for simple and complex ocean basins and complex bathymetry. The various prediction methods, currently used in oceanography and ocean engineering, are described and the examples of practical calculations illustrate the basic text. An appendix provides a description of the modern methods of wave measurement, including the remote sensing techniques. Also the wave simulation methods and random data analysis techniques are discussed. In the book a lot of discoveries of the Russian and East European scientists, largely unknown in the Western literature due to the language barrier, are referred to. Contents: Introduction; Generation of Waves by Wind; Spectral Properties of Ocean Waves; Statistical Properties of Ocean Waves; Prediction of Ocean Waves in Deep Water; Prediction of Ocean Waves in Shallow Water; Waves at Islands and Coral Reefs; Long-Term Statistics for Ocean Surface Waves; Measurement, Simulation and Data Processing; References; Readership: Researchers and graduate students in physical oceanography, ocean and coastal engineering. keywords: Ocean Waves; Spectral Analysis; Statistical Analysis; Stochastic Processes; Measurement Techniques; Data Processing; Remote Sensing Techniques; Wave Modelling; Similarity Laws; Ocean Wave Spectra; Nonlinear Wave Analysis; Long-Term Statistics

"The range of topics and applications is far more extensive; there is much more to tie together. The treatment is less discursive and somewhat more demanding, but always clear to a technically-trained reader … should be available to all physical and dynamical oceanographers interested in applications, and should be close at hand to graduate students and practitioners of ocean and coastal engineering." Applied Mechanics Reviews
Tropical Cyclone Wind-Wave, Storm Surge and Current in Meteorological Prediction

Wind Energy Utilization

Final Report on California Regional Wind Energy Forecasting Project

Digital Avionics Handbook

Selected Water Resources Abstracts

Water Pollution is a subject of growing concern in our industrial world. The environmental problems caused by the increase of pollutant loads discharged into natural water systems have led the scientific community to pursue studies capable of relating the pollutant discharge with changes in the water quality. The results of these studies are permitting industries to employ more efficient methods of controlling and treating the waste loads, and water authorities to enforce more strict legislation regarding this matter. The present book contains edited versions of the papers presented at the First International Conference on Water Pollution (Modelling, Measuring and Prediction), held in Southampton, England, in September 1991. Its contents, which reflect the interdisciplinarity of the subject, are divided into four parts, each consisting of a keynote address and several invited and contributed papers: 1. Mathematical models (Keynote speaker: Prof. R.A. Falconer, University of Bradford, USA) 2. Data acquisition/monitoring/measurement (Keynote speaker: Dr. A. Plata Bedmar, IAEA, Austria) 3. Waste disposal and wastewater treatment (Keynote speaker: Prof. D.R.F. Harleman, MIT, USA) 4. Chemical and biological problems (Keynote speaker: Dr. E.I. Hamilton, Environmental consultant, UK) Although the papers have been typographically edited they have been reproduced directly from material submitted by the authors, and their content is a reflection of the authors' research and opinion.

Wind Ramp Prediction

Effects of environmental, economic, social, political and technical factors have led to the rapid deployment of various sources of renewable energy-based power generation. The incorporation of these generation technologies have led to the development of a broad array of new methods and tools to integrate this new form of generation into the power system network. This book, arranged into six sections, highlights various renewable energy based generation technologies, and consists a series of papers written by experts in their respective fields of specialization. The Handbook of Renewable Energy Technology will be of great practical benefit to professionals, scientists and researchers in the relevant industries, and will be of interest to those of the general public wanting to know more about renewable energy technologies.

Handbook Of Renewable Energy Technology

November issue includes abridged index to yearly volume.
The increase of wind penetration into electric power system creates challenges to power grid management due to the variable nature of wind. Unlike conventional power plants, such as thermal, gas or hydro-based plants, wind power generation is not controllable. For example, days of calm weather may suddenly be followed by gusty winds associated with a storm or a front. The current wind power forecasting methodologies, which combine Numerical Weather Prediction (NWP) models and mathematical methods, have been well established during the last decade. However, this forecasting methodology has demonstrated a limited ability to forecast wind ramp events, which are defined as sudden, large changes in wind production. In this study different strategies are developed to improve wind ramp prediction and to provide additional probabilistic information of wind ramp occurrences to end users. First, a methodology of separate wind power predictions based on different weather regimes is presented. Second, an independent wind ramp prediction system is proposed to complement conventional ramp predictions. This system integrates information about the pressure gradient that is extracted by applying Gabor filters to two-dimensional pressure grids. Third, the temporal uncertainty of wind ramp occurrences is addressed using power scenarios generated from quantile forecasts of wind power. The probability of a wind ramp occurrence conditional to the number of scenarios predicting the ramp within certain time intervals is estimated using a logistic regression technique. The proposed strategies were tested on four wind farms located in southern Alberta, Canada, and their performance is discussed.

Ocean Surface Waves: Their Physics and Prediction

Although scientists have effectively employed the concepts of probability to address the complex problem of prediction, modern science still falls short in establishing true predictions with meaningful lead times of zero-probability major disasters. The recent earthquakes in Haiti, Chile, and China are tragic reminders of the critical need for improved methods of predicting natural disasters. Drawing on their vast practical experience and theoretical studies, Dr. Yi Lin and Professor Shoucheng OuYang examine some of the problems that exist in the modern system of science to provide the understanding required to improve our ability to forecast and prepare for such events. Presenting a series of new understandings, theories, and a new system of methodology, Irregularities and Prediction of Major Disasters simplifies the world-class problem of prediction into a series of tasks that can be learned, mastered, and applied in the analysis and prediction of forthcoming changes in materials or fluids. These internationally respected authors introduce their novel method of digitization for dealing with irregular information, proven effective for predicting transitional changes in events. They also: Unveil a new methodology for forecasting zero-probability natural disasters Highlight the reasons for common forecasting failures Propose a method for resolving the mystery of nonlinearity Include numerous real-life case studies that illustrate how to properly digitize available information Supply proven methods for forecasting small-probability natural disasters This authoritative resource provides a systematic discussion of the non-evolutionality of the modern system of science—analyzing its capabilities and limitations. By touching on the need for change in some of the fundamentals in basic scientific theories and relevant methodologies, this book provides the scientific community with the understanding and methodology required to forecast zero-probability major disasters with greatly improved accuracy.
Ocean Surface Waves

Supervised Machine Learning in Wind Forecasting and Ramp Event Prediction provides an up-to-date overview on the broad area of wind generation and forecasting, with a focus on the role and need of Machine Learning in this emerging field of knowledge. Various regression models and signal decomposition techniques are presented and analyzed, including least-square, twin support and random forest regression, all with supervised Machine Learning. The specific topics of ramp event prediction and wake interactions are addressed in this book, along with forecasted performance. Wind speed forecasting has become an essential component to ensure power system security, reliability and safe operation, making this reference useful for all researchers and professionals researching renewable energy, wind energy forecasting and generation. Features various supervised machine learning based regression models Offers global case studies for turbine wind farm layouts Includes state-of-the-art models and methodologies in wind forecasting

Application of Monochromatic Ocean Wave Forecasts to Prediction of Wave-induced Currents

"There has been increasing interest in predicting the velocity field within wind farms in complex terrain for resource assessment, turbine siting, and power forecasting. These capabilities are made possible by advancements in computational speed from a new generation of computing hardware and numerical methods. The current thesis research focuses on two technical components to advance the current state in wind power forecasting. The first component is improved prediction of wind flow over complex terrain using the versatile immersed boundary method to represent surface boundary conditions on a fixed Cartesian mesh. The proposed approach embodies the law-of-the-wall for rough surfaces and produces good results for benchmark wind data for complex terrain. The second component is the implementation and validation of wind turbine wake models and a first-principle based method to predict available wind power. Actuator disk models with and without rotation are considered. The wake models are validated against data from a published wind tunnel experiment and full-scale field data from an operational wind farm. The power prediction method is compared against normalized power data from operational wind farms and other computational studies available in literature. The actuator disk model with rotation simulates wake velocity deficits with better accuracy than the non-rotational model. The proposed power prediction method shows agreement with standard energy assessment methods without any ad-hoc decisions. Finally, the computational capability is applied to a hypothetical wind farm in Southern Idaho to demonstrate its versatility."--Boise State University ScholarWorks.

Numerical Models for the Prediction of Wind and Tide Driven Coastal Circulation and Water Level

A perennial bestseller, the Digital Avionics Handbook offers a comprehensive view of avionics. Complete with case studies of avionics architectures as well as examples of modern systems flying on current military and civil aircraft, this Third Edition includes: Ten brand-new chapters covering new topics and emerging trends Significant restructuring to deliver a more coherent and cohesive story Updates to all existing chapters to reflect the latest software and technologies Featuring discussions of new data bus and display concepts involving retina scanning, speech interaction, and synthetic vision,
the Digital Avionics Handbook, Third Edition provides practicing and aspiring electrical, aerospace, avionics, and control systems engineers with a pragmatic look at the present state of the art of avionics.

An Evaluation of a Numerical Water Elevation and Tidal Current Prediction Model Applied to Monterey Bay

Wind and Seismic Effects

Marine Structural Design, Second Edition, is a wide-ranging, practical guide to marine structural analysis and design, describing in detail the application of modern structural engineering principles to marine and offshore structures. Organized in five parts, the book covers basic structural design principles, strength, fatigue and fracture, and reliability and risk assessment, providing all the knowledge needed for limit-state design and re-assessment of existing structures. Updates to this edition include new chapters on structural health monitoring and risk-based decision-making, arctic marine structural development, and the addition of new LNG ship topics, including composite materials and structures, uncertainty analysis, and green ship concepts. Provides the structural design principles, background theory, and know-how needed for marine and offshore structural design by analysis Covers strength, fatigue and fracture, reliability, and risk assessment together in one resource, emphasizing practical considerations and applications Updates to this edition include new chapters on structural health monitoring and risk-based decision making, and new content on arctic marine structural design

Tellus

Prediction of Wind and Current Loads on VLCCs

The Dynamic Prediction of Wind Tides on Lake Erie

Renewable Electricity and the Grid

New technology for detailed numerical modeling of water levels and currents at potential Logistics Over the Shore (LOTS) sites is developed and demonstrated in preliminary form in conjunction with the JLOTS III exercise. The new technology offers great potential for systematically developing large-scale regional models which are driven by operational global scale tide and wind models. Nearshore areas of special interest, even complicated areas with shoals, islands, and channels, can be represented with exceptional detail and accuracy. The numerical model is applied to four sites along the North Carolina coast to develop water level and current information for LOTS site selection and operational forecasting. The initial and key modeling steps are performed with the long wave hydrodynamic model ADCIRC. The model is applied in the following two ways: (1) force with astronomical tides to create tidal constituent amplitudes and phases for elevations and currents at LOTS sites; (2) force with local wind fields to create table relating local wind to local water level and current. Follow-on programs were written as part of this study to combine the above tide and wind effects on water level and current and produce information in a form for the following: (a) Selecting optimum sites for LOTS operations; (b) Forecasting throughput during a LOTS operation. The user-oriented forecasting
program and its results were demonstrated onsite during the JLOTS III exercise. These products will be more formally integrated into the comprehensive LOTSSITE and LOTSTP software packages under development at WES. Currents, LOTS, Site selection, Forecasting, North Carolina, Water levels, JLOTS III, Numerical modeling, Winds.

Water Pollution: Modelling, Measuring and Prediction

This book contains selected papers from the Fourth International Conference on Computational Methods in Marine Engineering, held at Instituto Superior Técnico, Technical University of Lisbon, Portugal in September 2011. Nowadays, computational methods are an essential tool of engineering, which includes a major field of interest in marine applications, such as the maritime and offshore industries and engineering challenges related to the marine environment and renewable energies. The 2011 Conference included 8 invited plenary lectures and 86 presentations distributed through 10 thematic sessions that covered many of the most relevant topics of marine engineering today. This book contains 16 selected papers from the Conference that cover “CFD for Offshore Applications”, “Fluid-Structure Interaction”, “Isogeometric Methods for Marine Engineering”, “Marine/Offshore Renewable Energy”, “Maneuvering and Seakeeping”, “Propulsion and Cavitation” and “Ship Hydrodynamics”. The papers were selected with the help of the recognized experts that collaborated in the organization of the thematic sessions of the Conference, which guarantees the high quality of the papers included in this book.

MARINE 2011, IV International Conference on Computational Methods in Marine Engineering

The objects of the American Meteorological Society are "the development and dissemination of knowledge of meteorology in all its phases and applications, and the advancement of its professional ideals." The organization of the Society took place in affiliation with the American Association for the Advancement of Science at Saint Louis, Missouri, December 29, 1919, and its incorporation, at Washington, D. C., January 21, 1920. The work of the Society is carried on by the Bulletin, the Journal, and Meteorological Monographs, by papers and discussions at meetings of the Society, through the offices of the Secretary and the Executive Secretary, and by correspondence. All of the Americas are represented in the membership of the Society as well as many foreign countries.

Water Level and Current Prediction for the JLOTS III Exercise, Coast of North Carolina

Affordable Housing Construction R&D

This new guide describes the application of spatial technology to improve disaster risk management (DRM) within the aquaculture sector. DRM requires interrelated actions and activities to ensure early warning, prevention, preparedness, response and recovery for a wide range of natural, technological and complex disasters that can impact aquaculture operations and livelihoods. Spatial technology refers to systems and tools that acquire, manage and analyse data that have geographic context. Some of the technologies include satellite remote sensing, aerial surveys, global positioning systems, geographic information systems, information and communication technology and other data gathering sensors used, for instance, in meteorology. Spatial technology supports activities across all phases of the DRM cycle and its rapid development provides enhanced opportunities to support DRM within the aquaculture sector. This guide is organized in two parts. Part one is the “guidance”; it is the main
body of the document and describes the processes and steps for the use of spatial technology within DRM for aquaculture. Part two includes selected country case studies from Bangladesh, the Gulf of Mexico and the Caribbean, and Indonesia to illustrate the application of spatial technology in DRM for aquaculture at the national level within local contexts. Best practices at the farm and area management levels, supported by spatial technology, reduce volatility and risks and thus facilitate investment. Countries that would like aquaculture to grow sustainably and reliably are encouraged to use this guide in order to support spatial planning approaches and protect responsible investors. A separate summary version accompanies this publication.

Supervised Machine Learning in Wind Forecasting and Ramp Event Prediction

The number of wind turbines and wind farms in the Pacific Northwest has increased dramatically in the past six years, which represents a significant amount of electrical generation capacity connected to the public electric grid. However, the variable nature of wind sometimes introduces excessive power, or conversely shortages, in power delivery from the wind farm possibly leading to grid instability in the region. Knowing the short-term wind profile for a wind farm would allow system operators to better schedule generation resources yielding better grid stability. This thesis presents a method for predicting the power output of a Pacific Northwest Wind Farm by using data collected from wind anemometers located at the wind farm and from off-site meteorological stations. An auto-regressive moving average model (ARMA) with wind velocity inputs from off-site meteorological stations along with current and past wind velocities from the wind farm was used to predict wind velocity changes up to two hours in advance. The predicted wind velocities were then used to compute the future wind farm power output. A fuzzy logic inference system (FLIS) was used to detect and classify wind power ramps. The FLIS provides outputs indicating the degree of membership of power ramps from 10 to 50% of the nameplate rating of the wind farm. Wind Power Ramp prediction capability will allow system operators better management of the grid and reserve generation resources.

Irregularities and Prediction of Major Disasters

Supervised Machine Learning in Wind Forecasting and Ramp Event Prediction provides an up-to-date overview on the broad area of wind generation and forecasting, with a focus on the role and need of Machine Learning in this emerging field of knowledge. Various regression models and signal decomposition techniques are presented and analyzed, including least-square, twin support and random forest regression, all with supervised Machine Learning. The specific topics of ramp event prediction and wake interactions are addressed in this book, along with forecasted performance. Wind speed forecasting has become an essential component to ensure power system security, reliability and safe operation, making this reference useful for all researchers and professionals researching renewable energy, wind energy forecasting and generation. Features various supervised machine learning based regression models Offers global case studies for turbine wind farm layouts Includes state-of-the-art models and methodologies in wind forecasting

Monitoring and Prediction of Tropical Cyclones in the Indian Ocean and Climate Change

This book deals with recent advances in our understanding and prediction of tropical cyclogenesis, intensification and movement as well as landfall processes like heavy rainfall, gale wind and storm surge based on the latest observational and numerical weather prediction (NWP) modeling platforms. It also includes tropical cyclone (TC) management issues like early warning systems, recent high
impact TC events, disaster preparedness, assessment of risk and vulnerability including construction, archiving and retrieval of the best tracking and historical data sets, policy decision etc., in view of recent findings on climate change aspects and their impact on TC activity. The chapters are authored by leading experts, both from research and operational environments. This book is relevant to cyclone forecasters and researchers, managers, policy makers, graduate and undergraduate students. It intends to stimulate thinking and hence further research in the field of TCs and climate change, especially over the Indian Ocean region and provides high-quality reference materials for all the users mentioned above for the management of TCs over this region.

An Empirical Statistical Model Relating Winds and Ocean Surface Currents

An empirical statistical model is developed that relates the non-tidal motion of the ocean surface currents off the Oregon coast to forecasts of the coastal winds. The empirical statistical model is then used to produce predictions of the surface currents that are evaluated for their agreement with measured currents. Measurements of the ocean surface currents were made at 6 km resolution using Long-Range CODAR SeaSonde high-frequency (HF) surface current mappers and wind forecasts were provided at 12 km resolution by the North American Mesoscale (NAM) model. First, the response of the surface currents to wind-forcing measured by five coastal National Data Buoy Center (NDBC) stations was evaluated using empirical orthogonal function (EOF) analysis. A significant correlation of approximately 0.8 was found between the majority of the variability in the seasonal anomalies of the low-pass filtered surface currents and the seasonal anomalies of the low-pass filtered wind stress measurements. The U and the V components of the measured surface currents were both shown to be forced by the zonal and meridional components of the wind-stress at the NDBC stations. Next, the NAM wind forecasts were tested for agreement with the measurements of the wind at the NDBC stations. Significant correlations of around 0.8 for meridional wind stress and 0.6 for zonal wind stress were found between the seasonal anomalies of the low-pass filtered wind stress measured by the NDBC stations and the seasonal anomalies of the low-pass filtered wind stress forecast by the NAM model. Given the amount of the variance in the winds captured by the NAM model and the response of the ocean surface currents to both components of the wind, bilinear regressions were formed relating the seasonal anomalies of the low-pass filtered NAM forecasts to the seasonal anomalies of the low-pass filtered surface currents. The regressions turned NAM wind forecasts into predictions of the seasonal anomalies of the low-pass filtered surface currents. Calculations of the seasonal cycle in the surface currents, added to these predicted seasonal anomalies, produced a non-tidal estimation of the surface currents that allowed a residual difference to be calculated from recent surface current measurements. The sum of the seasonal anomalies, the seasonal cycle, and the residual formed a prediction of the non-tidal surface currents. The average error in this prediction of the surface currents off the Oregon coast remained less than 4 cm/s out through 48 hours into the future.

Supervised Machine Learning in Wind Forecasting and Ramp Event Prediction

Tropical Cyclone Wind-Wave, Storm Surge and Current in Meteorological Prediction.

Marine Structural Design

Prediction of Wind and Current Loads on VLCCs
Mariners Weather Log

Wind Generated Surface Current Prediction with a Dynamic Model Based Upon (k-[epsilon]) Turbulence

This paper discusses two Inland Flooding Models which have features applicable to the study of river flow and flooding. The models are presently being used to address field needs in the area of storm surge studies. They provide a tool to predict water level and currents where these variables are needed in the design of coastal protection projects. They are also being used to study the changes in water level or current patterns which a coastal project might cause. These could be changes in the daily tidal circulation as well as changes related to storm events.

Preliminary Report on the Numerical Prediction of Tides and Tidal Currents for Various Wind Conditions in the South China Sea

Copyright code: 00b9f3f8f127ee6358200022ee69248f